

 [image: _images/vfo_logo.png]

	[image: pypi] [https://pypi.org/project/vfo/]

	[image: GitHub Repo stars] [https://github.com/u-anurag/vfo]

	[image: Downloads] [https://pepy.tech/project/vfo]

Important

Current Version is 0.0.11

ANNOUNCEMENT: The plotting backend for vfo is being switched to a vtk based plotting tool PyVista starting vfo 0.0.6 for smooth interaction in large OpenSees model. Some of the commands are changing
and the older commands will not work with the new updated version. Please read this document carefully.

vfo - Visualization for OpenSees

vfo (Visualization for OpenSees) is a Python package to make your life better by helping you visualize your OpenSees [https://openseespydoc.readthedocs.io/en/latest/index.html] models, Python or Tcl.
It utilizes PyVista [https://docs.pyvista.org/index.html] library to plot 2D and 3D models in a dedicated interactive window. You can use click-and-hold to change the view angle and zoom the plot.
The model image can be saved with the desired orientation directly from the interactive plot window.

Animation: To save the animation movie as .mp4 file, FFmpeg [https://www.ffmpeg.org/about.html] codecs are required.

Following elements are supported:

	2D and 3D Beam-Column Elements

	2D and 3D Quad Elements

	2D and 3D Tri Elements

	8 Node Brick Elements

	4 Node Tetrahedron Elements

[image: _images/ModelVisualization_Intro.png]
Installation

python -m pip install vfo

python -m pip install --user vfo

To upgrade the package installation

python -m pip install --upgrade vfo

python -m pip install --user --upgrade vfo

The following two commands are needed to visualize the model, as shown below:

import vfo rendering module
import vfo.vfo as vfo

render the model after defining all the nodes and elements
vfo.plot_model()

plot mode shape
vfo.plot_modeshape(modenumber=3)

Following are commands and development guide related to model visualization:

	Installation

	Create Output Database

	saveFiberData2D command

	plot_model command

	plot_modeshape command

	plot_deformedshape command

	animate_deformedshape command

	plot_fiberResponse2D command

	animate_fiberResponse2D command

	Plotting OpenSees Tcl Output

Installation

	To install

python -m pip install vfo

python -m pip install --user vfo

	To upgrade

python -m pip install --upgrade vfo

python -m pip install --user --upgrade vfo

	To import

import vfo.vfo as vfo

Create Output Database

	
vfo.createODB(model="ModelName", <loadcase="LoadCaseName">, <Nmodes=0>, <deltaT=0.0>)

	This command creates an Output Database for the active model with an option to save a specific load case output.
The command must be called while the model is built, but before the main analysis is run.
An output database with name ModelName_ODB is created in the current directory with node and element information
in it. See the example below.

Input arguments are as follows,

	model (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model the user wants to save database with.

	loadcase (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder to save load case output data.(Optional)

	Nmodes (int [https://docs.python.org/3/library/functions.html#int])

	Number of modes to be saved for visualization.(Optional)

	deltaT (float [https://docs.python.org/3/library/functions.html#float])

	Timesteps at which output to be saved. By default, the output is saved at each analysis step. (optional)

Here is a simple example:

vfo.createODB(model="TwoSpan_Bridge", Nmodes=3)

The above command will create,

	a folder named TwoSpan_Bridge_ODB containing the information of the nodes and elements to visualize the structure in future without using a OpenSeesPy model file.

	a sub-folder named ModeShapes containing information on modeshapes and modal periods.

	no output from any loadcase will be saved saved in this case even if the analysis is run in the script since there is no argument for loadcase argument is provided.

Here is another example command to be used when recording data from a load case.

vfo.createODB(model="TwoSpan_Bridge", loadcase="Dynamic_GM1", Nmodes=3, deltaT=0.5)

The above command should be used right before running a load case analysis in the OpenSeesPy script and will create,

	a folder named TwoSpan_Bridge_ODB containing the information on the nodes and elements to visualize the structure in future without using a OpenSeesPy model file.

	a sub-folder named Dynamic_GM1 containing the information on node displacement data to plot deformed shape.

	a sub-folder named ModeShapes containing information on modeshapes and modal periods.

	the node displacement data will be saved at closest time-steps at each 0.05 sec interval.

saveFiberData2D command

	
vfo.saveFiberData2D(ModelName, LoadCaseName, eleNumber, sectionNumber, deltaT=0.0)

	This command saves the fiber output of the specified section in a non-linear beam-column element to a sub-folder named
“LoadCaseName” inside the output database folder “ModelName_ODB”. This output data can be visualized using plot_fiberResponse2D()
and animate_fiberResponse2D() commands.

	ModelName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model the user wants to save database with.

	LoadCaseName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder to save load case output data.

	eleNumber (int [https://docs.python.org/3/library/functions.html#int])

	Tag of the element with a fiber section assigned.

	sectionNumber (float [https://docs.python.org/3/library/functions.html#float])

	Tag of the section where the fiber response is to be recorded.

	deltaT (list [https://docs.python.org/3/library/stdtypes.html#list])

	Timesteps at which output to be saved. Default is 0.0. (optional)

Here is a simple example:

vfo.saveFiberData2D("TwoSpan_Bridge", "Pushover", 101, 2)

The above command will:

	create a folder named TwoSpan_Bridge_ODB and a sub-folder named Pushover if they are not already there.

	save fiber response of the section with a tag 2 of the element with a tag 101 in the Pushover folder.

plot_model command

	
vfo.plot_model(model='none', show_nodes='no', show_nodetags='no', show_eletags='no', font_size=10, setview='3D', elementgroups=None, line_width=1, filename=None)

	Once the model is built, it can be visualized using this command. By default Node and element tags are not displayed.
No analysis is required in order to visualize the model.

To visualize an OpenSees model from an existing database (using createdODB() command), the optional argument
model=”ModelName” should be used. The command will read the model data from folder ModelName_ODB.

	model (str [https://docs.python.org/3/library/stdtypes.html#str])

	name of the model output database as used in createODB() function. If no name is provided, the function tries to get data from the active model. Default is “none”. (optional)

	show_nodes (str [https://docs.python.org/3/library/stdtypes.html#str])

	Renders nodes as spheres if “yes”. Default is “no”. (optional)

	show_nodetags (str [https://docs.python.org/3/library/stdtypes.html#str])

	Displays node tags if “yes”. Default is “no”. (optional)

	show_eletags (str [https://docs.python.org/3/library/stdtypes.html#str])

	Displays element tags if “yes”. Default is “no”. (optional)

	font_size (int [https://docs.python.org/3/library/functions.html#int])

	Size of tag font. Default is 10. (optional)

	setview (str [https://docs.python.org/3/library/stdtypes.html#str])

	sets the camera view to predefined angles. Valid entries are “xy”,”yz”,”xz”,”3D”, or a list with [x,y,z] unit vector. Default is “3D”. (optional)

	elementgroups (list [https://docs.python.org/3/library/stdtypes.html#list])

	List of lists of elements of groups and respective colors. See example below. (optional)

	line_width (float [https://docs.python.org/3/library/functions.html#float])

	Line width of the rendered elements. (optional)

	filename (str [https://docs.python.org/3/library/stdtypes.html#str])

	Filename to save an image of the modeshape. (optional)

Input arguments to diaplay node and element tags can be used in any combination.

	vfo.plot_model()
	Displays the model using data from the active OpenSeesPy model with no node and element tags on it.

	vfo.plot_model(show_nodetags="yes")
	Displays the model using data from the active OpenSeesPy model with only node tags on it.

	vfo.plot_model(show_eletags="yes")
	Displays the model using data from the active OpenSeesPy model with only element tags on it.

	vfo.plot_model(show_nodetags="yes",show_eletags="yes")
	Displays the model using data from the active OpenSeesPy model with both node and element tags on it.

	vfo.plot_model(model="ModelName",show_nodetags="yes")
	Displays the model using data from an existing database “ModelName_ODB” with only node tags on it.

	vfo.plot_model(elementgroups=[[[1,2,3],[10,11]],["red","blue"]])
	Displays the model using data from the active model with elements [1,2,3] in “red” and elements [10,11] in “blue” colors.

[image: _images/Model_Archetype.png]

plot_modeshape command

	
vfo.plot_modeshape(model='none', modenumber=1, scale=10, setview='3D', contour='none', contourlimits=None, line_width=1, filename=None)

	Any modeshape can be visualized using this command. There is no need to perform an eigen analysis exclusively since the command runs
an eigen analysis internally.

	model (str [https://docs.python.org/3/library/stdtypes.html#str])

	name of the model output database as used in createODB() function. If no name is provided, the function tries to get data from the active model. Default is “none”. (optional)

	modenumber (int [https://docs.python.org/3/library/functions.html#int])

	Mode number to visualize. For example: plot_modeshape(modenumber=3).

	scale (float [https://docs.python.org/3/library/functions.html#float])

	Scale factor for to display mode shape. (optional, default is 10)

	setview (str [https://docs.python.org/3/library/stdtypes.html#str])

	Sets the camera view to predefined angles. Valid entries are “xy”,”yz”,”xz”,”3D”, or a list with [x,y,z] unit vector. Default is “3D”. (optional)

	contour (str [https://docs.python.org/3/library/stdtypes.html#str])

	Contours of displacement in x, y, or z. Default is “none”. (optional)

	contourlimits (list [https://docs.python.org/3/library/stdtypes.html#list])

	A list of minimum and maximum limits of the displacement contours. (optional)

	line_width (float [https://docs.python.org/3/library/functions.html#float])

	Line width of the rendered elements. (optional)

	filename (str [https://docs.python.org/3/library/stdtypes.html#str])

	Filename to save an image of the modeshape. (optional)

Example:

	vfo.plot_modeshape(modenumber=1, scale=300)
	Displays the 3rd modeshape using data from the active OpenSeesPy model with a scale factor of 300. This command should be called from an OpenSeesPy model script once the model is completed. The model should successfully work for Eigen value analysis. There is no need to create a database with createODB() command to use this option.

	vfo.plot_modeshape(modenumber=1, scale=300, model="3D_Building")
	Displays the 3rd modeshape using data from 3D_Building_ODB database with a scale factor of 300. This command can be called from cmd, Ipython notebook or any Python IDE. An output database using createODB() has to be present in the current directory to use this command.

[image: _images/Mode1_Archetype.png]

plot_deformedshape command

	
vfo.plot_deformedshape(model='ModelName', loadcase='LoadCaseName', scale=10, tstep=-1, overlap='no', contour='none', setview='3D', line_width=1, contourlimits=None, filename=None)

	Displays the deformed shape of the structure by reading data from a saved output database.

	model (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model to read data from output database, created with createODB() command.

	loadcase (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder with load case output data.

	scale (float [https://docs.python.org/3/library/functions.html#float])

	Scale factor for to display mode shape. (optional, default is 10)

	tstep (float [https://docs.python.org/3/library/functions.html#float])

	Approximate time of the analysis at which deformed shape is to be displaced. (optional, default is the last step)

	setview (str [https://docs.python.org/3/library/stdtypes.html#str])

	sets the camera view to predefined angles. Valid entries are “xy”,”yz”,”xz”,”3D”, or a list with [x,y,z] unit vector. Default is “3D”. (optional)

	line_width (float [https://docs.python.org/3/library/functions.html#float])

	Line width of the rendered elements. (optional)

	contour (str [https://docs.python.org/3/library/stdtypes.html#str])

	Contours of displacement in x, y, or z. Default is “none”. (optional)

	contourlimits (list [https://docs.python.org/3/library/stdtypes.html#list])

	A list of minimum and maximum limits of the displacement contours. (optional)

	filename (str [https://docs.python.org/3/library/stdtypes.html#str])

	Filename to save an image of the modeshape. (optional)

Examples:

	vfo.plot_deformedshape(model="3D_Building", loadcase="Dynamic_GM1")
	Displays the deformedshape of structure by reading data from 3D_Building_ODB with a sub-folder Dynamic_GM1 at the last analysis step (default) with a default scale factor of 10.

	vfo.plot_deformedshape(model="3D_Building", loadcase="Dynamic_GM1", tstep=24.0, scale=50)
	Displays the deformedshape of structure by reading data from 3D_Building_ODB with a sub-folder Dynamic_GM1 at the analysis time closest to 24.0 sec with a scale factor of 50.

[image: _images/Deformedshape_Archetype.png]

animate_deformedshape command

	
vfo.animate_deformedshape(model="ModelName",loadcase="LoadCaseName",scale=10,speedup=1,

	
contour="none",setview="3D",line_width=1,node_for_th=None,node_dof=1,

	
moviename=None,gifname=None)

	Displays an animation of the deformed structure by reading data from a saved output database.
The animation object should be stored as an variable in order for the animation to run.

When saving the animation as a GIF file or .mp4 movie, the on-screen animation window may seem flickering based on the computer hardware.

	model (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model to read data from output database, created with createODB() command.

	loadcase (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder with load case output data.

	scale (int [https://docs.python.org/3/library/functions.html#int])

	Scale factor for to display mode shape. (optional, default is 10)

	speedup (int [https://docs.python.org/3/library/functions.html#int])

	A factor to speedup the animation. (optional, The default is 1)

	setview (str [https://docs.python.org/3/library/stdtypes.html#str])

	sets the camera view to predefined angles. Valid entries are “xy”,”yz”,”xz”,”3D”, or a list with [x,y,z] unit vector. Default is “3D”. (optional)

	contour (str [https://docs.python.org/3/library/stdtypes.html#str])

	Contours of displacement in x, y, or z. Default is “none”. (optional)

	line_width (float [https://docs.python.org/3/library/functions.html#float])

	Line width of the rendered elements. (optional)

	node_for_th (int [https://docs.python.org/3/library/functions.html#int])

	Node ID to display displacement time-history. (optional)

	node_dof (int [https://docs.python.org/3/library/functions.html#int])

	Degree-of-freedom to display displacement time-history of node_for_th. Default is 1. (optional)

	moviename (str [https://docs.python.org/3/library/stdtypes.html#str])

	Filename to save animation as a movie in .mp4 format. (optional)

	gifname (str [https://docs.python.org/3/library/stdtypes.html#str])

	Filename to save animation as a movie in .gif format. (optional)

Examples:

[image: _images/Animation_Archetype.gif]
ani = vfo.animate_deformedshape(model="3D_Building", loadcase="Dynamic_GM1")

The above command animates the deformedshape of structure by reading data from 3D_Building_ODB with a sub-folder Dynamic_GM1 at default time-step speed.

ani = vfo.animate_deformedshape(model="3D_Building", loadcase="Dynamic_GM1", speedup=4, scale=50, gifname="Building_Dynamic")

The above command animates the deformedshape of structure by reading data from 3D_Building_ODB with a sub-folder Dynamic_GM1 at a speed 4x the default saved steps using a scale factor of 50. The animation movie will be saved as Building_Dynamic.mp4 in the current folder.

plot_fiberResponse2D command

	
vfo.plot_fiberResponse2D(ModelName, LoadCaseName, element, section, LocalAxis='y', InputType='stress', tstep=-1)

	Plots the fibre stress or strain distribution along the local Z or Y-axis of a 2D fiber section.
The local axis appears on the x axis, while the fiber response appears on the y axis.

	ModelName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model to read data from output database, created with createODB() command.

	LoadCaseName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder with load case output data.

	element (int [https://docs.python.org/3/library/functions.html#int])

	Tag of the element where the section to be plotted is located.

	section (int [https://docs.python.org/3/library/functions.html#int])

	Tag of the section to be plotted.

	LocalAxis (str [https://docs.python.org/3/library/stdtypes.html#str])

	Local axis of the section, based on a user defined axes transformation. (optional, default is “Y”)

	InputType (str [https://docs.python.org/3/library/stdtypes.html#str])

	Type of the fiber response to be plotted, "stress" or "strain". (optional, default is “stress”)

	tstep (float [https://docs.python.org/3/library/functions.html#float])

	Approximate time of the analysis at which fiber response is to be plotted. The program will find the closed time step to the input value.(optional, default is the last step).

Examples:

	vfo.plot_fiberResponse2D("TwoSpan_Bridge", "Dynamic_GM1", 101, 2)
	Plots the fiber stress (default) distribution of section 2 in element 101 of structure by reading data from TwoSpan_Bridge_ODB with a sub-folder Dynamic_GM1 at the last analysis step (default).

animate_fiberResponse2D command

	
vfo.animate_fiberResponse2D(Model, LoadCase, element, section,

	
LocalAxis='y', InputType='stress', skipStart=0, skipEnd=0, rFactor=1,

	
outputFrames=0, fps=24, Xbound=[], Ybound=[])

	Animates fibre stress or strain distribution along the local Z or Y-axis of a 2D fiber section.
The local axis appears on the x axis, while the fiber response appears on the y axis.
The animation object should be stored as an variable in order for the animation to run.

	ModelName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model to read data from output database, created with createODB() command.

	LoadCaseName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the subfolder with load case output data.

	element (int [https://docs.python.org/3/library/functions.html#int])

	Tag of the element where the section to be plotted is located.

	section (int [https://docs.python.org/3/library/functions.html#int])

	Tag of the section to be plotted.

	LocalAxis (str [https://docs.python.org/3/library/stdtypes.html#str])

	Local axis of the section to appear on the x axis. (optional, default is “Y”)

	InputType (str [https://docs.python.org/3/library/stdtypes.html#str])

	Type of the fiber response to be plotted, possible values are "stress" or "strain". (optional, default is “stress”)

	skipStart (int [https://docs.python.org/3/library/functions.html#int])

	If specified, this many datapoints will be skipped from the data start. (optional, default is 0)

	skipEnd (int [https://docs.python.org/3/library/functions.html#int])

	If specified, this many datapoints will be skipped from the data end. (optional, default is 0)

	rFactor (int [https://docs.python.org/3/library/functions.html#int])

	If specified, only every “x” frames will be output by this factor. For example, if x=2, every other frame will be used in the animation. (optional, default is 0)

	outputFrames (int [https://docs.python.org/3/library/functions.html#int])

	The number of frames to be included after all other reductions. (optional, default is 0)

	fps (str [https://docs.python.org/3/library/stdtypes.html#str])

	Number of animation frames to be displayed per second. (optional, default is 24)

	Xbound (list [https://docs.python.org/3/library/stdtypes.html#list])

	``[xmin, xmax]` The domain of the chart. (optional, default is 1.1 the max and min values)

	Ybound (float [https://docs.python.org/3/library/functions.html#float])

	``[ymin, ymax]` The domain of the chart. (optional, default is 1.1 the max and min values)

Examples:

	ani = vfo.animate_fiberResponse2D("TwoSpan_Bridge", "Dynamic_GM1", 101, 2)
	Animates the fiber stress (default) distribution of section 2 in element 101 of structure by reading data from TwoSpan_Bridge_ODB with a sub-folder Dynamic_GM1 at the last analysis step (default).

Plotting OpenSees Tcl Output

OpenSees Tcl users can also take advantage of the plotting functions of vfo_for_tcl library. In order to do that, a Tcl script
vfo_for_tcl.tcl to create an output database is used. First the user need to source vfo_for_tcl.tcl into the OpenSees tcl model file and then
call the procedure to create an output database. This procedure does what createODB() does in vfo. Once the output database is created, users
can call plot_model(), plot_modeshape(), plot_deformedshape() and animate_deformedshape() commands. Compatibility with other commands will be
added in the next release.

Download the Tcl script here vfo_for_tcl.tcl.

	
createODB "ModelName" "LoadCaseName" Nmodes

	

	ModelName (str [https://docs.python.org/3/library/stdtypes.html#str])

	Name of the model the user wants to save database with. Folder name will be ModelName_ODB

	LoadCaseName (str [https://docs.python.org/3/library/stdtypes.html#str])

	"none" or "LoadCaseName". Name of the subfolder to save load case output data.

	Nmodes (int [https://docs.python.org/3/library/functions.html#int])

	0 or Nmodes (int). Number of modes to be saved for visualization.

Note: To record modeshape data, this procedure utilizes an internal Eigenvalue analysis. Make sure your model is well defined to avoid errors.

Example: Here is a minimal example of how to use vfo_for_tcl.tcl.

source the script in the beginning of the Tcl script.
source vfo_for_tcl.tcl

create model here.
define nodes, elements etc.
Once the model definition is finished, call the procedure to record the first 3 modeshapes.
When recording modeshapes, use "none" for the loadCaseName.

createODB "3DBuilding" "none" 3

The above command will save all the data in a folder named "3DBuilding_ODB" and ...
... a sub-folder "Modeshapes".

Now to record data from a dynamic loadcase, assign a name for load case folder and ...
... the number 0 to Nmodes to avoid performing Eigenvalue analysis again.

createODB "3DBuilding" "Dynamic" 0

The above command will save the node displacement data to a sub-folder "Dynamic" in ...
... the "3DBuilding_ODB" folder.

Now open a python terminal or Jupyter notebook and type the following. Make sure you install the latest version of OpenSeesPy first.
Or, put the following lines in a Python script and run.

import vfo.vfo as vfo

render the model with node and element tags on it
vfo.plot_model(model="3D_Building",show_nodetags="yes",show_eletags="yes")

plot mode shape 2 with a scale factor of 100
vfo.plot_modeshape(modenumber=1, scale=300, model="3D_Building")

animate the deformed shape for dynaic analysis and save it as a 3DBuilding.mp4 file.
vfo.animate_deformedshape(model="3D_Building", loadcase="Dynamic_GM1", gifname="Building_Dynamic")

All figures are interactive and can be saved as a .png file from the plot window.

Index

 B
 | V

B

 	
 	
 built-in function

 	vfo.createODB()

 	vfo.plot_deformedshape()

 	vfo.plot_fiberResponse2D()

 	vfo.plot_model()

 	vfo.plot_modeshape()

 	vfo.saveFiberData2D()

V

 	
 	
 vfo.createODB()

 	built-in function

 	
 vfo.plot_deformedshape()

 	built-in function

 	
 vfo.plot_fiberResponse2D()

 	built-in function

 	
 	
 vfo.plot_model()

 	built-in function

 	
 vfo.plot_modeshape()

 	built-in function

 	
 vfo.saveFiberData2D()

 	built-in function

Visualization Development Guide

You are welcome to contribute to the plotting/post-processing commands. This documentation is to explain what is going on inside
the plotting library “Get_Rendering” and how you can enhance the functons. As of now, Get_Rendering has functions
to plot a structure, mode shapes and shape of a displaced structure and works for 2D (beam-column elements,
tri, and quad) and 3D (beam-column, tri, 4-node shell, and 8-node brick) elements.

As of now, all plotting functions should use Matplotlib only and should be able to produce interactive plots. Developers should test
the new functions extensively , including on Jupyter Notebook, before submitting a pull request.

Note: A list of test examples will be available soon.

The source code of all the plotting functions is located in OpenSeesPy [https://github.com/zhuminjie/OpenSeesPy/tree/master/openseespy-pip/openseespy/postprocessing] repository.

As an object oriented approach and to reduce the code repetition, Get_Rendering uses two types of functions.

Internal Database functions

These functions get, write to and read data from output database.

_getNodesandElements() : Gets node and element tags from the active model, stores node tags with coordinates and element tags with connected nodes in numpy arrays.

_saveNodesandElements() : Saves the node and element arrays from _getNodesandElements() to text files with “.out” extension.

_readNodesandElements() : Reads the node and element data into numpy arrays from the saved files.

_getModeShapeData() : Gets node deflection for a particular mode from the active model, stores node tags with modeshape data in numpy arrays.

_saveModeShapeData() : Saves the modeshape data arrays from _getModeShapeData() to text files with “.out” extension.

_readModeShapeData() : Reads the modeshape data into numpy arrays from the saved files.

_readNodeDispData() : Reads the node displacement data into numpy arrays from the saved files (from createODB() command).

_readFiberData2D() : Reads the section fiber output data into numpy arrays from the saved files (from saveFiberData2D() command).

Internal Plotting functions

These functions are helper functions that are called by the user functions once the updated
node coordinates are calculated.

_plotBeam2D() : A procedure to plot a 2D beam-column (or any element with 2 nodes) using iNode, jNode and some internal variables as input.

_plotBeam3D() : A procedure to plot a 3D beam-column (or any element with 2 nodes) using iNode, jNode and some internal variables as input.

_plotTri2D() : A procedure to render a 2D, three node shell (Tri) element using iNode, jNode, kNode in counter-clockwise order and some internal variables as input.

_plotTri3D() : A procedure to render a 3D, three node shell (Tri) element using iNode, jNode, kNode in counter-clockwise order and some internal variables as input.

_plotQuad2D() : A procedure to render a 2D, four node shell (Quad, ShellDKGQ etc.) element using iNode, jNode, kNode, lNode in counter-clockwise and some internal variables as input.

_plotQuad3D() : A procedure to render a 3D, four node shell (Quad, ShellDKGQ etc.) element using iNode, jNode, kNode, lNode in counter-clockwise and some internal variables as input.

_plotCubeSurf() : This procedure is called by the plotCubeVol() command to render each surface in a cube using four corner nodes.

_plotCubeVol() : A procedure to render a 8-node brick element using a list of eight element nodes in bottom and top faces and in counter-clockwise order, and internal variables as input.

_plotEle_2D() : A procedure to plot any 2D element by calling other internal plotting commands for 2D elements.

_plotEle_3D() : A procedure to plot any 3D element by calling other internal plotting commands for 3D elements.

_initializeFig() : Initializes a matplotlib.pyplot figure for each of the user plotting commands. This procedure reduced the code repetition.

_setStandardViewport() : Sets a standard viewport for matplotlib.pyplot figure for each of the user plotting commands. This procedure reduced the code repetition.

User functions

These are the functions available to users to call through OpenSeesPy script. The following table describes what they are and how they work.

createODB() : Redords the model and loadcase data to be used by other plotting functions in a user defined output folder.

saveFiberData2D() : Redords the output data from all the fibers in a particular section to plot the distribution.

plot_model() : Gets the number of nodes and elements in lists by calling getNodeTags() and getEleTags(). Then plots the elements in a loop by checking if the model is 2D or 3D, and calling the nodecoord() command for each node to get its original coordinates and internal function _plotBeam3D.

plot_modeshapes() : Gets the number of nodes and elements in lists by calling getNodeTags() and getEleTags(). In a loop, calls nodecoord() and nodeEigenvector() for each node to get original and eigen coordinates respectively. Then plots the mode shape by calling the internal functions.

plot_deformedshape(): Reads the displacement data from the output of createODB() function and original coordinates using nodecoord() function. Then plots the displaced shape of the structure using the internal functions in a manner similar to plot_modeshapes().

plot_fiberResponse2D(): Reads the fiber output data from the output of saveFiberData2D() function and plots the distribution across the section.

animate_deformedshape(): Reads the displacement data from the output of createODB() function and original coordinates using nodecoord() function. Then animates the displaced shape of the structure.

animate_fiberResponse2D(): Reads the fiber output data from the output of saveFiberData2D() function and animates the stress/strain distribution across the section.

Example of an internal function

Here is an example of _plotQuad3D() internal function:

_plotQuad3D(iNode, jNode, kNode, lNode, ax, show_element_tags, element, eleStyle, fillSurface)

This function uses the following inputs:

	*Nodes

	iNode, jNode, kNode, lNode : A list of four nodes in counter-clockwise order.

	ax

	Reference to the Matplotlib fixure axes space. This should not be changed.

	show_element_tags

	
	The default is set to “yes” for plotting the model with plot_model() and “no” while plotting mode shapes
	or deformed shapes. This should not be changed.

	element

	This is the tag of that particular element as a string which is displayed when show_element_tags=”yes”.

	eleStyle

	
	Use eleStyle = “wire” for a wire frame, and “solid” for solid element lines. Wire frame is used when
	overlapping the original shape of the structure with the mode shape or displaced shape.

	fillSurface

	Use fillSurface = “yes” for color fill in the elements. fillSurface=”no” for wireframe.

Naming conventions

The names of classes, variables, and functions should be self-explanatory. Look for names that give useful information about the meaning of the variable or function.
All the internal functions should start with “_” and be in camelCase (for example _plotCubeSurf) to distinguish them from the user functions. There are two type of
user functions, 1) recorder functions and 2) plot functions. All the “recorder” functions should start with “record” and use camelCase (example: recordNodeDisp) and
the plotting functions should start with “plot_” use snake_case (example: plot_deformedshape). Try to keep the internal variables (see 3. Example) consistant. New internal variable should be
defined only if necessary.

Wish List

Some functions helpful to users might include, but not limited to,

	plot_stress() : Record stress in all the elements of a function and plot. This will be useful in visualization of shear walls, fluid-structure interaction and soil modeled as brick elements.

	plot_strain() : Similar functionality as above.

	plot_sectionfiber() : Visualize stress-strain distribution accross a fiber section in a non-linear beam-column element.

	plot_elementforces() : Element forces such as moment, shear, axial force.

	animate_elementstress() : Animation of the stress or strain in a structure.

Feel free to comment and discuss how to streamline your plotting code with the existing Get_Rendering library. Or contact me
Anurag Upadhyay [https://github.com/u-anurag].

 _static/file.png

_static/plus.png

_images/Animation_Archetype.gif

_static/minus.png

_static/plot_deformedshape_output.png
Deformation at time; 24.0

1000
750
500
250

-250
~500
-750

_images/ModelVisualization_Intro.png
; ? w\mx \/L\f ,kf K,f

»..

R

_images/Model_Archetype.png
[XX X XX AAAAAAAAANRRRNIYIINN

(YYYVYVVVWAAAAAXXXX Z/

VFO- Visualzation for OpenSees

_images/Deformedshape_Archetype.png
Q
e
e
e
e
e
]
o
<

L X X) LAAAAAAAAANSITN

CX X\ N\

\LX X X3 (Y VNAAAAAARXX TN 7/

VFO- Visualzation for OpenSees

_static/vfo_logo.png
Visualization For OpenSees

_images/Mode1_Archetype.png
Mode =1

TERAVAVAVAVATATATA'AA4 €4 AN

SR A AR A X)/

VFO- Visualzation for OpenSees

nav.xhtml

 Table of Contents

 		
 vfo - Visualization for OpenSees

_static/Deformedshape_Archetype.png
Q
e
e
e
e
e
]
o
<

L X X) LAAAAAAAAANSITN

CX X\ N\

\LX X X3 (Y VNAAAAAARXX TN 7/

VFO- Visualzation for OpenSees

_static/Mode1_Archetype.png
Mode =1

TERAVAVAVAVATATATA'AA4 €4 AN

SR A AR A X)/

VFO- Visualzation for OpenSees

_images/vfo_logo.png
Visualization For OpenSees

_static/Animation_Archetype.gif

_static/Model_Archetype.png
[XX X XX AAAAAAAAANRRRNIYIINN

(YYYVYVVVWAAAAAXXXX Z/

VFO- Visualzation for OpenSees

_static/Model_Plot3D.png
i T EEE

A AT

_static/ModeShape_5_Plot3D.png

_static/ModelVisualization_Intro.png
; ? w\mx \/L\f ,kf K,f

»..

R

